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hydrolyze two principal lipid substrates associated with li-
poprotein particles, triglycerides (TGs), and phospholip-
ids. The released fatty acids (FAs) resulting from lipase 
hydrolysis are taken up by subjacent tissue and used for 
energy storage (adipose), oxidation, and energy produc-
tion (skeletal muscle and heart) and the synthesis of bioac-
tive metabolites (variety of tissues). 

 LPL is principally a TG lipase involved in the metabo-
lism of TG-rich lipoproteins (chylomicrons and very-low-
density lipoproteins) in adipose and muscle and heart 
tissues ( 1 ). Its defi ciency and overexpression have been 
linked to metabolic abnormalities such as hypertriglyceri-
demia, insulin resistance, and cardiomyopathy, indicating 
the critical role of this enzyme in TG metabolism ( 4–10 ). 
Unlike LPL, HL has comparable TG lipase and phospholi-
pase activities and is involved in the hepatic metabolism of 
high-density lipoprotein (HDL) as well as apolipoprotein 
B (apoB)-containing lipoproteins (LpBs) ( 11, 12 ). Over-
expression of HL reduces plasma levels of HDL and LpBs, 
whereas HL defi ciency has the opposite effect ( 13–16 ). EL 
is predominantly a phospholipase affecting HDL metabo-
lism, but it also shares a redundant role with HL in the 
metabolism of LpBs ( 11, 17 ). Indeed, modulation of EL 
activity in mice leads to changes in plasma HDL levels simi-
lar to those of HL ( 18–20 ), refl ecting their related sub-
strate specifi cities. Consistent with their multifaceted 
involvement in lipoprotein metabolism, LPL, HL, and EL 
are strongly associated with plasma lipid levels in the gen-
eral population ( 21 ). 

       Abstract   Lipase maturation factor 1 (Lmf1) is an endo-
plasmic reticulum (ER) membrane protein involved in the 
posttranslational folding and/or assembly of lipoprotein li-
pase (LPL) and hepatic lipase (HL) into active enzymes. 
Mutations in Lmf1 are associated with diminished LPL and 
HL activities (“combined lipase defi ciency”) and result in 
severe hypertriglyceridemia in mice as well as in human sub-
jects. Here, we investigate whether endothelial lipase (EL) 
also requires Lmf1 to attain enzymatic activity. We demon-
strate that cells harboring a ( cld ) loss-of-function mutation 
in the  Lmf1  gene are unable to generate active EL, but they 
regain this capacity after reconstitution with the  Lmf1  wild type. 
Furthermore, we show that cellular EL copurifi es with Lmf1, 
indicating their physical interaction in the ER. Finally    , we de-
termined that post-heparin phospholipase activity in a patient 
with the LMF1 W464X  mutation is reduced by more than 95% 
compared with that in controls.   Thus, our study indicates 
that EL is critically dependent on Lmf1 for its maturation in 
the ER and demonstrates that Lmf1 is a required factor for 
all three vascular lipases, LPL, HL, and EL.  —Ben-Zeev, O., 
M. Hosseini, C-M. Lai, N. Ehrhardt, H. Wong, A. B. Cefalù, 
D. Noto, M. R. Averna, M. H. Doolittle, and M. Péterfy. 
 Lipase maturation factor 1 is required for endothelial lipase 
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 The vascular lipase family is composed of three evolu-
tionarily related enzymes, lipoprotein lipase (LPL), he-
patic lipase (HL), and endothelial lipase (EL) ( 1–3 ). 
Localized to the luminal face of tissue capillaries, lipases 
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a tobacco etch virus (TEV) protease site and ending in two adja-
cent IgG-binding domains derived from protein A ( 29 ). Mouse 
Lmf1 cDNA was subcloned into the pcDNA3.1 expression vector 
(Invitrogen) containing an N-terminal c-Myc epitope tag ( 25 ). 

 Affi nity purifi cation and Western blotting 
 Lipase affi nity purifi cation and immunoblotting were per-

formed as described previously ( 25 ). Before Western blot analysis 
of EL in cell culture medium, samples were concentrated by 
heparin-Sepharose affi nity purifi cation in batch mode. Briefl y, 
heparin-Sepharose slurry was added to aliquots of conditioned 
medium, incubated for 1 h, washed three times with 50 mM Tris-
HCl, pH 7.5, and eluted with 2 M NaCl and boiling. 

 Lipase assays 
 For lipase assays from cell extracts, lysates were prepared by 

sonication in 20 mM Tris-HCl buffer, pH 7.5, containing 0.2% 
deoxycholate and 10 U/ml heparin. The activity levels of LPL 
and HL were measured using the respective triolein substrates 
prepared by sonication ( 30 ). PL was assayed with the substrate 
used for HL in the presence of colipase (Sigma) as described 
previously ( 28 ). EL activity was determined using a phospholi-
pase assay utilizing a glycerol-stabilized emulsion of cholesteryl 
oleate and phosphatidylcholine as described previously ( 31 ). Cel-
lular protein was assayed using the bicinchoninic acid (BCA) re-
agent (Pierce). To determine secreted EL activity, cells were 
treated with 10 U/ml heparin before cell culture supernatants 
were harvested. For the estimation of EL activity in pre- and post-
heparin plasma, the same phospholipid substrate was used in the 
presence and absence of 1 M NaCl; because EL activity is inhib-
ited by high salt, salt-inhibited activities are reported ( 31 ). The 
University of Palermo and University of California, Los Angeles, 
Institutional Review Boards approved the study protocol. Written 
informed consent was given by all subjects. 

 Determination of plasma EL concentration 
 Post-heparin plasma samples were diluted 1:200 in 0.02 M 

PBS, and EL protein concentration was determined by ELISA 
(Uscn Life Science, Inc.) according to the manufacturer’s 
instructions. 

 RESULTS 

 The  cld  mutation affects EL activity 
 We have previously demonstrated that the  cld  mutation 

abrogates the posttranslational maturation and activity of 
two related lipases, LPL and HL ( 32 ). However, the effect 
of the  cld  mutation on EL, a third lipase family member, 
has yet to be evaluated. To address the dependency on 
Lmf1 function among various lipase family members, ex-
pression vectors encoding LPL, HL, EL, and a more dis-
tantly related lipase, PL (  Fig. 1A  ),  were transfected into 
fi broblasts harboring the recessive, loss-of-function  cld  mu-
tation. After transfection, cells heterozygous ( cld /+) and 
homozygous ( cld / cld ) for the mutation were assessed by 
measurements of lipase activities. As expected from previ-
ous studies ( 27, 32 ), the activity levels of LPL and HL, but 
not PL, were dramatically reduced in  cld / cld  cells ( Fig. 
1B ). Importantly, we found that EL was as severely affected 
as LPL and HL, with only  � 5% of the wild-type activity 
detected in homozygous mutant cells. These results suggest 
that the combined lipase defi ciency phenotype associated 

 The lipase maturation factor 1 ( Lmf1 ) gene has been 
recently identifi ed as the gene affected by the combined 
lipase defi ciency ( cld ) mutation in the mouse ( 22 ). Ho-
mozygous  cld  mice develop severe hypertriglyceridemia 
and die shortly after birth due to complications arising 
from massive chylomicronemia ( 23 ). Although LPL defi -
ciency is the principal cause of elevated plasma TG levels, 
HL activity is also diminished in  cld  mice. As mRNA and 
protein expression of LPL and HL in  cld  mice are unaf-
fected, the lack of enzymatic activity is the result of lipase 
misfolding, causing aggregation and retention of the inac-
tive lipase protein in the endoplasmic reticulum (ER). 
Thus, Lmf1 is a critical factor in the posttranslational mat-
uration of nascent lipase polypeptides into active enzymes 
( 24 ). Lmf1 is an ER membrane protein that has been 
shown to interact with LPL and HL through one of its 
loops extending into the ER lumen ( 25 ). Loss  -of-function 
mutations (Y439X and W464X) have also been identifi ed 
in the human ortholog of Lmf1, LMF1 ( 22, 26 ). Individu-
als homozygous for these mutations exhibit severe hyper-
triglyceridemia and diminished post-heparin LPL and HL 
activities, similar to combined lipase defi ciency in mice. 

 An intriguing aspect of the Lmf1 function is its specifi c-
ity toward lipases. Whereas LPL and HL depend on Lmf1 
to attain catalytic activity, pancreatic lipase (PL), an evolu-
tionarily related enzyme, is unaffected by the  cld  mutation 
( 27 ). Additional members of the TG lipase superfamily 
have not been evaluated. An obvious candidate for Lmf1 
action is EL, which is the most closely related homolog of 
LPL. Thus, in the present study, we investigated the role of 
Lmf1 in the expression of active EL. Our results suggest 
that EL activity is critically dependent on Lmf1 function. 

 MATERIALS AND METHODS 

 Cell lines and transfection 
 Fibroblast cell lines derived from  cld  homozygous ( cld / cld ) 

and heterozygous ( cld /+) mice have been described previously 
( 27 ). Both the cells carrying the  cld  mutation and the HEK293 
cells were maintained in DMEM supplemented with 10% fetal 
bovine serum, penicillin-streptomycin, sodium pyruvate, glu-
tamine, and nonessential amino acids. Fibroblasts were trans-
fected by electroporation using a Nucleofector device (Amaxa 
Biosystems) according to the manufacturer’s instructions (pro-
gram U-24, solution V). Electroporated cells were plated in colla-
gen-coated 12 well plates. HEK293 cells were transfected with 
FuGENE6 transfection reagent (Roche) according to the manu-
facturer’s instructions. Cells were harvested 24–48 h after 
transfection. 

 Expression constructs 
 Human LPL, HL, PL, and EL cDNAs were subcloned into the 

pcDNA6 expression vector (Invitrogen) containing a C-terminal 
V5 epitope tag as described previously ( 28 ). For experiments us-
ing lipase affi nity purifi cation, a tandem affi nity purifi cation 
(TAP) tag was synthesized for in-frame integration into an  Age I 
site occurring just after the V5 epitope tag of pcDNA6 ( 29 ). After 
transfection, the resulting expressed LPL, HL, PL and EL pro-
teins contained a C-terminal V5-TAP tag consisting of the V5 
epitope followed by a single calmodulin-binding peptide domain, 
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indicating that Lmf1 transfection restored the activity of 
these lipases to heterozygous levels. Furthermore, analysis 
of untransfected cells demonstrated that the low activity 
detected in the absence of Lmf1 ( 2 Lmf1 in  Fig. 2B ) rep-
resents endogenous lipases and not exogenous EL (data 
not shown). Thus, EL activity is completely dependent on 
functional Lmf1 in our assay. Importantly, immunoblot 
analyses indicated that elevated lipase activities in Lmf1-
expressing cells were not due to increased lipase protein 
mass but, rather, to higher specifi c activity ( Fig. 2B ). To 
determine the dependence of secreted EL activity on 
Lmf1, we also analyzed cell culture medium after heparin 
treatment. As shown in  Fig. 2C , EL activity was undetect-
able in conditioned medium from Lmf1-defi cient cells, 
but activity was rescued by Lmf1 expression. Interestingly, 
unlike LPL and HL ( 32 ), EL protein secretion was unaf-
fected by the presence or absence of Lmf1 ( Fig. 2C ), indi-
cating that inactive EL is readily secreted from cells 
carrying the  cld  mutation. In conclusion, our results dem-
onstrate that, similar to LPL and HL, Lmf1 is critically re-
quired for the posttranslational processing of EL into 
active enzyme. 

 Lmf1 interacts with EL 
 To investigate whether EL dependency on Lmf1 func-

tion involves physical interaction between these two pro-
teins, we performed affi nity purifi cation experiments. 

with the  cld  mutation extends to a third member of the 
triglyceride lipase family, namely EL. 

 Lmf1 is required for the posttranslational maturation of 
EL 

 The  cld  mutation in the  Lmf1  gene arose on a rare vari-
ant form of chromosome 17, called the  t- haplotype ( 33 ). 
Due to several large inversions, the  t -haplotype region is 
subject to recombination suppression with wild-type chro-
mosomes and, as a consequence, has accumulated a vari-
ety of deleterious mutations during its evolutionary history 
( 34 ). To investigate whether diminished EL activity in 
 cld / cld  cells is the consequence of the  cld  mutation affect-
ing Lmf1 function or the result of other linked variants 
associated with the  t -haplotype, we complemented  cld / cld  
cells with wild-type ( 22 ). In these experiments, mutant 
 cld / cld  cells were cotransfected with the  Lmf1  wild type 
along with the various lipase expression constructs, and 
lipase activities were determined (  Fig. 2A  ).  As PL is not 
dependent on Lmf1 function, coexpression of wild-type 
Lmf1 did not increase the activity of this enzyme ( Fig. 2B ). 
In fact, PL activity is apparently reduced in the presence of 
Lmf1, an effect currently not fully understood. In contrast, 
Lmf1 expression elevated the activities of cell-associated 
HL, LPL, and EL several fold. The fold increases in LPL 
and EL activities are similar to those between the  cld  and 
heterozygous cells transfected with lipases only ( Fig. 1B ), 

  Fig.   1.  Members of the lipase gene superfamily that 
are affected by the  cld  mutation are shown. A: The 
phylogenetic tree of the lipase gene family shows a 
group of closely related members (HL, LPL, and EL) 
that form homodimers compared with the more dis-
tantly related PL, which is active as a monomer. The 
subunit structure of the remaining members is not 
known. All members of the family are secreted en-
zymes, and thus, all mature within the ER. The mem-
bers include PLA1A, phospholipase A1 member A 
(Q53H76); LIPH, lipase member H (Q8WWY8); PL, 
pancreatic triacylglycerol lipase (P16233), and the 
three PL-related lipases, PLR1 (P54315), PLR2 
(P54317), and PLR3 (Q17RR3); HL, hepatic triacyl-
glycerol lipase (P11150); LPL, lipoprotein lipase 
(P06858); and EL, endothelial lipase (Q9Y5X9). B: 
The four members of the lipase gene family with 
known subunit structures were transfected into cells 
homozygous for the  cld  mutation ( cld/cld ), and ex-
pressed lipase activity was compared with that of con-
trol cells carrying only one copy of the  cld  allele 
(+/ cld ). Panels show representative Western blots of 
total cell lysates visualized using an antibody against a 
lipase-specifi c epitope tag.   
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  Fig.   2.  Reconstitution of Lmf1 expression in  cld/cld  cells rescues lipase activity. A: Schematic diagram shows 
the reconstitution assay. Lmf1-defi cient cells are cotransfected with Lmf1 and lipase expression vectors. At 
1–2 days after transfection, lipase activity and mass were assessed in cell lysates. B: Upper panels show cell-
associated lipase activities (n = 3) after cotransfection with Lmf1 (black bars) or empty vector (gray bars) and 
the respective lipases. Lower panels show representative Western blots of total cell lysates visualized using an 
antibody against a lipase-specifi c epitope tag. C: EL activity released into cell culture medium after heparin 
treatment of cells transfected with EL ± Lmf1 is shown. Lower panel shows Western blot of cell culture me-
dium. ND, not detectable.   
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from that of EL based on their differential sensitivities to 
high salt concentrations ( 31 ). Thus, we hypothesized that 
if LMF1 defi ciency caused diminished EL activity in vivo, 
it would result in reduced heparin-releasable and salt-
inhibitable phospholipase activity in plasma of the patient 
carrying the W464X mutation. Indeed, the proband exhib-
ited over 95% reduction in phospholipase activity compared 
with that of controls (  Fig. 4  ).  Furthermore, EL protein 
mass in post-heparin W464X plasma was similar to control 
levels (134.6 ng/ml vs. control median of 133.55 ng/ml). 
In conclusion, these data are consistent with those from 
our in vitro studies indicating that Lmf1 is required for EL 
to attain enzymatic activity. 

 DISCUSSION 

 We report in this study that in addition to LPL and HL, 
EL also requires Lmf1 to attain enzymatic activity. Multiple 
lines of evidence support this conclusion, including the 
inability of Lmf1-defi cient cells to produce active EL, physi-
cal interaction between EL and Lmf1, and the virtual absence 
of post-heparin phospholipase activity in an LMF1-defi cient 
patient. Thus, we extend the “combined lipase defi ciency” 
phenotype resulting from the lack of functional Lmf1 to 
include a third member of the lipase gene family, EL. 

 The identifi cation of three lipases dependent on Lmf1 
suggests a shared posttranslational maturation pathway for 
these proteins. An obvious structural similarity between 
LPL ( 35 ), HL ( 36 ), and EL ( 37 ) is that their activity de-
pends on homodimerization, an assembly step that takes 
place in the ER where Lmf1 resides. While these three li-
pases are thought to have a crystal structure similar to that 
of PL, only PL is active as a monomer ( 38 ), and only this 
lipase is independent of Lmf1 function ( 27 ). Thus, we pro-
pose that Lmf1 is involved in the assembly and/or stabili-
zation of lipase homodimers in the ER. Several previous 
studies are consistent with this hypothesis. First, assembly 
of LPL monomers into active dimers takes hours in vitro 
( 39 ) but only minutes in the ER ( 40 ), suggesting that this 
process is likely to be aided by a chaperone(s), such as 
Lmf1. Likewise, lipase homodimers rapidly dissociate to 
misfolded monomers in vitro unless stabilized by binding 
to factors such as heparin ( 39 ). In contrast, the LPL dimer 
is highly stable in the ER lumen, suggesting that an ER-
specifi c stabilizing factor prevents such dissociation in vivo 
( 40, 41 ). Second, in Lmf1-defi cient cells, the amount of 
LPL homodimers is severely diminished with a concomi-
tant increase in LPL aggregates ( 27 ). This aggregation is 
unlikely to be due to defective folding of the monomer, as 
LPL is properly glycosylated in these cells, indicating that 
early steps of maturation facilitated by the calnexin cycle 
are unaffected ( 27 ). Instead, the formation of aggregates 
likely refl ects the accumulation of monomers due to inef-
fi cient homodimer assembly and/or stabilization in the 
absence of Lmf1. Indeed, the LPL monomer has been 
demonstrated to be prone to aggregation, probably due to 
exposure of a hydrophobic surface area that is shielded in 
the assembled homodimer ( 39, 42 ). Finally, phylogenetic 

Epitope-tagged Lmf1 and affi nity-tagged lipase proteins 
were coexpressed in HEK293 cells. Lipase proteins were 
then affi nity purifi ed from cell extracts, with Lmf1 copuri-
fi cation assessed by immunodetection. As demonstrated 
previously ( 25 ), Lmf1 could be detected in association 
with LPL and HL but not with PL (  Fig. 3  ).  Furthermore, 
and consistent with its functional effect on EL, Lmf1 was 
readily detected together with affi nity-purifi ed EL, indicat-
ing that the proteins physically interact. To exclude the 
possibility that the interaction is due to abnormal lipase 
structure resulting from the C-terminal affi nity tag, we 
confi rmed that affi nity-tagged EL was fully active (see sup-
plementary Fig. I). 

 LMF1 defi ciency diminishes post-heparin phospholipase 
activity 

 In order to evaluate whether Lmf1 is required for the 
expression of active EL in vivo, we initially attempted to 
analyze plasma from  cld  homozygous mice. However, as 
these mice die within 1–2 days after birth, we were unable 
to collect suffi cient amounts of plasma for the reliable de-
tection of EL activity. In contrast to mice, LMF1 defi ciency 
in humans is not lethal, permitting the use of plasma from 
an LMF1-defi cient patient we previously characterized 
( 26 ). This individual carries a homozygous nonsense mu-
tation in LMF1 (W464X) and exhibits diminished post-
heparin activity levels for both LPL and HL associated with 
massive hypertriglyceridemia. Although a specifi c assay 
measuring the activity of EL has not been developed, it has 
been demonstrated that the majority of heparin-releasable 
plasma phospholipase activity can be attributed to EL in 
the mouse ( 19 ). Moreover, the activity of HL, another 
heparin-released phospholipase, can be discriminated 

  Fig.   3.  HL, LPL, and EL, but not PL, copurify with the Lmf1 pro-
tein. HEK293 cells were cotransfected with Lmf1 and each of four 
affi nity-tagged lipase constructs (HL, LPL, PL, and EL), including 
an empty vector control (vect). The top and middle panels repre-
sent Western blots of total cell lysates visualized using antibody 
(Ab) to either lipase-specifi c (V5) or Lmf1-specifi c (c- myc ) epitope 
tags. Each expressed lipase construct was then affi nity (affi ) puri-
fi ed from total cell lysates under mild conditions that favor reten-
tion of protein-protein interactions. The bottom panel represents 
a Western blot of the affi nity-purifi ed lipases probed using anti-
body directed to the Lmf1-specifi c epitope tag.   
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diminished and offers further insights into lipase interac-
tions. For example, hypertriglyceridemia is typically associ-
ated with low HDL levels, a consequence of enhanced 
clearance resulting from the lipolytic actions of HL, and 
perhaps EL, on TG-enriched HDL particles ( 48 ). Yet  , de-
spite severely elevated TG levels due to LPL defi ciency, 
HDL-cholesterol in the LMF1 W464X  patient is within normal 
range ( 26 ), likely refl ecting reduced activities of HL and 
EL. Although the lack of HDL-lowering effect is predictable 
based on known activities of the individual lipases, more de-
tailed characterization of the combined lipase defi ciency 
phenotype will no doubt uncover further insights about lipase 
interactions and their effects on lipoprotein metabolism. 

 In addition to plasma lipoprotein remodeling, lipases 
are also critical components in tissue lipid homeostasis. 
Through the liberation of FA from lipoprotein-bound 
glycerolipids, these enzymes provide substrates for energy 
storage and generation in adipose and muscle, respectively 
( 49 ), and the synthesis of FA-derived signaling molecules 
involved in transcriptional regulation in various tissues 
( 50 ). All of these processes are likely to be affected by the 
lack of active lipases in LMF1 defi ciency. Adipose tissue 
may offer an interesting illustration of the metabolic ef-
fects of combined lipase defi ciency. Under normal cir-
cumstances, LPL-mediated TG hydrolysis is the main 
source of FA for adipose TG synthesis and storage ( 51 ). 
Nonetheless, adipose tissue mass is largely unaffected by 
LPL defi ciency both in human subjects ( 52, 53 ) and ani-
mal models ( 5, 54, 55 ), which has been attributed to adap-
tations in adipocyte metabolism. First, de novo synthesis of 
FAs is increased in the absence of LPL activity ( 5, 56 ). Fur-
thermore, EL expression is substantially upregulated in 
LPL-defi cient adipose tissue, providing an alternative 
pathway for FA uptake ( 57 ). However, the latter compen-
satory mechanism is expected to be ineffectual in LMF1 
defi ciency due to impaired posttranslational maturation 
of EL. Thus, lipid homeostasis is likely to be more severely 
affected in LMF1-defi cient than LPL-defi cient adipose is-
sue, especially in humans where lipogenic capacity is lower 
than in mice ( 58 ). Consistent with this hypothesis, an 
LMF1-defi cient human subject exhibits lipodystrophy 
( 22 ). Similar to adipose tissue, reciprocal regulation of li-
pase expression also occurs in other tissues. Namely, LPL 
and HL are upregulated in EL-defi cient muscle and liver, 
respectively, further highlighting the functional redun-
dancy and interrelatedness of lipase family members ( 20 ). 
It is therefore likely that LMF1 defi ciency in these tissues 
leads to metabolic defects not observed in the absence of 
individual lipases. Testing of this hypothesis awaits the 
generation of viable adult and tissue-specifi c Lmf1-defi cient 
mouse models.  

 We thank Dawn Marchadier and Daniel J. Rader for measure-
ments of EL protein levels in human plasma. 
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and experimental models ( 4, 16, 19 ) have demonstrated a 
central role for secreted lipases in plasma lipid metabolism. 
These lipases regulate lipoprotein metabolism through 
their bifunctional lipolytic activities (i.e., triacylglycerol 
and phospholipid lipase) and interactions with multiple 
classes of lipoprotein particles. Although the metabolic 
consequences of defi ciencies ( 4, 16, 19 ) and overex-
pression ( 10, 14, 18 ) of individual lipases have been exten-
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remain poorly characterized. Considering the redundant 
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demia and atherosclerotic cardiovascular disease. For ex-
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bined lipase defi ciency. These mice exhibit phenotypes 
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increased neonatal lethality and the accumulation of small 
LDL particles, which revealed a redundant role for HL 
and EL in the metabolism of apoB-containing lipopro-
teins. LMF1 defi ciency represents a unique metabolic sce-
nario where the activities of three lipases are simultaneously 

  Fig.   4.  LMF1 defi ciency abrogates plasma phospholipase activity. 
Heparin-released salt-sensitive phospholipase activity in a patient 
carrying the homozygous LMF1 W464X  mutation (closed symbol) is 
expressed as a percentage of mean of control subjects (open 
symbols).   
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